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As is well known, the problem of uniform unsteady motion of a gas re- 

duces to the problem of integration of a set of partial differential 

equations. Sedov has shown [ 1 1 that for problems determined by only 

two dimensionally independent parameters, besides the radial distance 

r and time t, the partial differential equations can be replaced by 

ordinary differential equations, corresponding to the self-similar 

motions of the gas. 

One example of such self-similar motions occurs when a “piston” 

located at r expands according to the law r = Ct” in a gas with an 

initial density p1 and an initial pressure p1 = 0 (which corresponds 

to an infinitely large pressure jump across the shock wave generated 

by the motion of the piston). 

Solutions for such motions were carried out in references f 2,3,4 1. 

Reference [5 1 has established that self-similar motion takes place 

only for a limited range of the exponent m, namely for R > 2/(2 f v) 

where 1/ = 1, 2, 3 correspond to the plane, cylindrically, and spher- 

ically symmetric problems, respectively. The present paper treats a 

more general case of self-similar motions. 

Consider self-similar motions of gas with shock waves which spread into 

quiescent gas according to the power law 

I = et" (pl = const, Pl = 0) Of 

where D is the shock velocity. 

This class of motions includes both diverging and converging flows. 

One example of converging flows is that of a strong peripheral shock wave 

[61: 
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One can form only one dimen- 

sionless combination 

CtW 
h=----- 

r (31 

out of the parameters which de- 

termine the problem. When use 

is made of the dimensionless 

functions defined by the rela- 

tions tions 

Fig. 1. 

V= +-- v P) , P = p,R (1.) , p = q P (I.) , 
XP 

Z=R (4) 

the following set of equations is obtained 12 1: (5) 
dz 
-#=Z 

[Z (V-1)+(x-l)V](V-n- 1)~-(x-1)v(v-l~(v--n-l)-[2(V-l)-2n (X--l)/%]2 
(V - n - 1) [V (V - 1) (V - n - 1) - (2n / y. + vV) z] 

din?. (V--n-I)~--2 
dfr= V(V-l)(V-n-I)-(2n/x+vV)z 

+g(V--n-l)= V(V-i)(V-n-I)-(2n/x+vV)z 

z-(V-n- I)2 + vv (7) 

Ihe solution of the problem is found by integrating the system (5) - 

(7) with the given initial conditions: 

p2 T-= sl p,D2 = +I pJ2t2n, % = +i D = &Ctn, p2 = Xs p1 (8) 

r2 = * Ddt = 
s 

+*Ct”+‘, ?.,=qLz+f, v,+t =zf& (9) 

12, --_ p2 23 ) 
PI x - 1 

p, _ Pd2 _ 
Pl’Z2 

+* (n + 1)2, .z2 = %$ = ‘I; (y+;);) (n + 1)’ 
X 

at piston ‘VI = n ,-}- 1 (IO) 

Figure 1 displays the integral curves in the V, z plane for v = 2 and 

- l,< n< 0. ?he calculations were carried out on the electronic computer 

"Strela" (Arrow). The solutions are found on both sides of the locus 

(V*2' t,) of the conditions just behind the shock: diverging flows corres- 

pond to the upper branches of the curves and converging flows to the lower 

branches. The diverging flows for n > - 0.5 correspond to the outward 

piston motion according to the power law. For n = - 0.5 one has the blast 

wave solution either at the center or on the periphery. The rest of the 

flows are bounded in the V, z plane by a curve on which the parameter )L 
takes on extremal values. The pressure, density, and velocity fields are 
displayed in Figs, 2, 3 and 4. Here curves to the right correspond to 
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converging flows and curves to the left to diverging flows. 

Fig. 2. 

Let us consider some applications of these results. According to the 
law of hypersonic similarity and Mach number idependence of the drag 
coefficient [7 I for geometrically similar bodies, the product of the 
wave-drag coefficient and the square of the fineness ratio is a constant 
(independent of M) 

C,L2 = C’ = 

M approaches 

a power 

= becomes 

po = 
P-Pa) 4 PC 
'/aPo3~ca2 

- E2 
x+1 

(12) 

Here E is the local shock angle which is related to the local body 
slope** 

. 

l . 

Detailed theoretical and experimental results for such bodies in 

English can be found in T. Kubota’s Investigation of Flov Around 

Bodies in Hypersonic Flov, GALCIT, Hypersonic Res. Project, Memo 

40, June 1957. 

Presumably o. 

Simple 

No. 
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0 r0 - = -- Z pa0 

E r2 
($3) 

here r0 is the body radius. The local pressure coefficient at the body 
is 

‘lhese results show that for hypersonic 
speeds with adiabatic exponent K = 1.4 the 
smallest drag of bodies obeying a power-law 
is attained for r0 = CX~*‘~. Therefore, the 
a body for very large Mach numbers will be ^ ..,. optimal axisymnetric shape of 

fuller than that indicated for Newtonian pressure law, nsmely r. = Cx”*“. 
The drag of this optimal shape is 27 per cent less than that of the cone 
with equal fineness ratio. 

pio = _2_22pao 
x + 1 r202 

(14) 

Consequently, the wave-drag coefficient 
is obtainable from the expression 

Here L represents the fineness ratio, body 
length to maximum body radius. Unsteady 
axisyaraetric diverging flows with - 0.5 < 
n c 0 in Figs. l-4 correspond to steady 
flows around axisymmetric bodies for which 
r. follows a power law. The values of pzO, 
r2,, and CaL2 for these cases are given in 
the Table. 

The variation of the wave-drag coefficient Cx of bodies obeying a 
power-law with volume Q is shown in Fig. 5, where the primes indicate 
properties of the circular cone. 

In Fig. 6 curve 1 represents* the solutions for flows around circular 
cones obtained by the present method, to be compared with the circles 
computed by the usual integration of conical flows for # = 10.94. Curve 
2 corresponds to flows around bodies with rO = CX**‘. 

* Note change in notation: here L is true length, rather than the fine- 
ness ratio. 
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Fig. 4. Fig. 5. 

‘Ihe exaqle covers the practical optimization of body nose shapes in 
hypersonic flight as far as the wave drag is concerned. It is worth noting 

also the distribution of densities and pressures at the body which effect 
the heat transfer favorably. 

TABLE 

n ( 0 ) -0.1 1 -0.15 1 -0.2 1 -0.25 1 -0.3 1 -0.35 I -0.4 1 -0.45 

PZO 1.0497 0.983 0.942 0.891 0.836 0.78 0.713 0.6177 0.5121 
b,o 0.9149 0.9053 0.8977 0.8888 0.8751 0.8567 0.8293 0.7771 0.6648 
cx L= 2.091 1.822 1.71 1.604 1.533 1.517 1.583 1.8411 3.213 

Similarly, other parametric regions in Figs. 2-4 can be utilized to 

predict flows for which shocks follow a power law. Thus axisymnetric di- 

verging flows for n < - 0.5 correspond to exterior flows around open 

bodies which allow through-flow. Turbulent converging flows can be 

utilized for evaluation of corresponding internal axisymnetric steady 

flows. As an example, curve 1 in Fig. 7 represents the internal body con- 

tour and curve 2 the shock wave corresponding to the shock shape x = kr2. 
It must be noted that in these flows the entropy changes take place only 

inside the shock wave and that downstream from it the compression is 
isentropic along streamlines (see pressure variations in Fig. 2). 
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Fig. 6. Fig. 7. 
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